Four Examples

1. Determine the value of the current that is measured by the meter in this circuit.

Solution

We can label the circuit as shown.
The subscripts suggest a numbering of the circuit elements. Apply KVL to node the left mesh to get

$$
15 i_{1}+25 i_{1}-20=0 \Rightarrow i_{1}=\frac{20}{40}=0.5 \mathrm{~A}
$$

Apply KVL to node the left mesh to get

$$
v_{2}-25 i_{1}=0 \Rightarrow v_{2}=25 i_{1}=25(0.5)=12.5 \mathrm{~V}
$$

Apply KCL to get $i_{\mathrm{m}}=i_{2}$. Finally, apply Ohm's law to the 50Ω resistor to get

$$
i_{\mathrm{m}}=i_{2}=\frac{v_{2}}{50}=\frac{12.5}{50}=0.25 \mathrm{~A}
$$

2. Determine the value of the current that is measured by the meter in this circuit.

Solution

We can label the circuit as shown.
The subscripts suggest a numbering of the circuit elements. Ohm's law to the 8Ω resistor to get

$$
i_{1}=\frac{v_{1}}{8}
$$

Apply KCL at the top node of the CCCS to get

$$
i_{1}+0.25 v_{1}=i_{2} \Rightarrow i_{2}=i_{1}+0.25 v_{1}=\frac{v_{1}}{8}+0.25 v_{1}=0.375 v_{1}
$$

Ohm's law to the 8Ω resistor to get

$$
v_{2}=12 i_{2}=12\left(0.375 v_{1}\right)=4.5 v_{1}
$$

Apply KVL to the outside to get

$$
v_{1}+v_{2}-20=0 \Rightarrow v_{1}+4.5 v_{1}=20 \Rightarrow v_{1}=\frac{20}{5.5}=3.636 \mathrm{~V}
$$

Apply KCL to get $i_{\mathrm{m}}=i_{2}$. Finally, apply Ohm's law to the 12Ω resistor to get

$$
i_{\mathrm{m}}=i_{2}=\frac{v_{2}}{12}=\frac{4.5 v_{1}}{12}=\frac{4.5(3.636)}{12}=1.634 \mathrm{~A}
$$

3. Determine the value of the voltage that is measured by the meter in this circuit

Solution

We can label the circuit as shown.

The subscripts suggest a numbering of the circuit elements. Ohm's law to the 48Ω resistor to get

$$
v_{1}=48 i_{1}
$$

Apply KCL at the top node of the CCCS to get

$$
i_{1}+5 i_{1}=i_{2} \quad \Rightarrow \quad i_{2}=6 i_{1}
$$

Ohm's law to the 4Ω resistor to get

$$
v_{\mathrm{m}}=4 i_{2}=4\left(6 i_{1}\right)=24 i_{1}
$$

Apply KVL to the outside loop to get

$$
v_{1}+v_{\mathrm{m}}-24=0 \Rightarrow 48 i_{1}+24 i_{1}=24 \Rightarrow i_{1}=\frac{24}{72}=\frac{1}{3} \mathrm{~A}
$$

Finally,

$$
v_{\mathrm{m}}=24 i_{1}=24\left(\frac{1}{3}\right)=8 \mathrm{~V}
$$

4. Determine the value of the voltage that is measured by the meter in this circuit.

Solution

We can label the circuit as shown.
The subscripts suggest a numbering of the circuit elements. Apply KCL at the top node of the current source to get

$$
i_{1}=i_{2}+0.25
$$

Ohm's law to the resistors to get

$$
v_{1}=20 i_{1} \text { and } v_{2}=60 i_{2}=60\left(i_{1}-0.25\right)=60 i_{1}-15
$$

Apply KVL to the outside to get

$$
v_{2}+80 i_{1}+v_{1}=0 \Rightarrow\left(60 i_{1}-15\right)+80 i_{1}+20 i_{1}=0 \Rightarrow i_{1}=\frac{15}{160}=0.09375 \mathrm{~A}
$$

Finally,

$$
v_{\mathrm{m}}=80 i_{1}=80(0.09375)=7.5 \mathrm{~V}
$$

